Skip to main content Skip to main navigation

Publications

Displaying results 531 to 540 of 13863.
  1. Andrea Galassi; Kristian Kersting; Marco Lippi; Xiaoting Shao; Paolo Torroni

    Neural-Symbolic Argumentation Mining: An Argument in Favor of Deep Learning and Reasoning

    In: Frontiers in Big Data, Vol. 2 - 2019, Pages 0-10, Frontiers, 1/2020.

  2. Robert Peharz; Antonio Vergari; Karl Stelzner; Alejandro Molina; Martin Trapp; Xiaoting Shao; Kristian Kersting; Zoubin Ghahramani

    Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning

    In: Amir Globerson; Ricardo Silva (Hrsg.). Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence. Conference in Uncertainty in Artificial Intelligence (UAI-2019), July 22-25, Tel Aviv, Israel, Pages 334-344, Proceedings of Machine Learning Research, Vol. 115, AUAI Press, 2019.

  3. Claas Völcker; Alejandro Molina; Johannes Neumann; Dirk Westermann; Kristian Kersting

    DeepNotebooks: Deep Probabilistic Models Construct Python Notebooks for Reporting Datasets

    In: Peggy Cellier; Kurt Driessens (Hrsg.). Machine Learning and Knowledge Discovery in Databases. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD-2019), International Workshops of ECML PKDD 2019, Proceedings, Part I, September 16-20, Würzburg, Germany, Pages 28-43, Communications in Computer and Information Science, Vol. 1167, Springer, 2019.

  4. Navdeep Kaur; Gautam Kunapuli; Saket Joshi; Kristian Kersting; Sriraam Natarajan

    Neural Networks for Relational Data

    In: Dimitar Kazakov; Can Erten (Hrsg.). Inductive Logic Programming - 29th International Conference, Proceedings. International Conference on Inductive Logic Programming (ILP-2019), September 3-5, Plovdiv, Bulgaria, Pages 62-71, Lecture Notes in Computer Science (LNAI), Vol. 11770, Springer, 2019.

  5. Fabrizio Ventola; Karl Stelzner; Alejandro Molina; Kristian Kersting

    Residual Sum-Product Networks

    In: Manfred Jaeger; Thomas Dyhre Nielsen (Hrsg.). Proceedings of the 10th International Conference on Probabilistic Graphical Models. International Conference on Probabilistic Graphical Models (PGM-2020), September 23-25, Aalborg, Denmark, Pages 545-556, Proceedings of Machine Learning Research, Vol. 138, PMLR, 2020.

  6. Xiaoting Shao; Alejandro Molina; Antonio Vergari; Karl Stelzner; Robert Peharz; Thomas Liebig; Kristian Kersting

    Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures

    In: Manfred Jaeger; Thomas Dyhre Nielsen (Hrsg.). Proceedings of the 10th International Conference on Probabilistic Graphical Models. International Conference on Probabilistic Graphical Models (PGM-2020), September 23-25, Aalborg, Denmark, Pages 401-412, Proceedings of Machine Learning Research, Vol. 138, PMLR, 2020.

  7. Tjitze Rienstra; Matthias Thimm; Kristian Kersting; Xiaoting Shao

    Independence and D-separation in Abstract Argumentation

    In: Diego Calvanese; Esra Erdem; Michael Thielscher (Hrsg.). Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning. International Conference on Principles of Knowledge Representation and Reasoning (KR-2020), September 12-18, Rhodes, Greece, Pages 713-722, IJCAI Organization, 2020.

  8. Patrick Schramowski; Cigdem Turan; Sophie F. Jentzsch; Constantin A. Rothkopf; Kristian Kersting

    BERT has a Moral Compass: Improvements of ethical and moral values of machines

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/1912.05238, Pages 0-10, arXiv, 2019.

  9. Fabrizio Ventola; Karl Stelzner; Alejandro Molina; Kristian Kersting

    Random Sum-Product Forests with Residual Links

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/1908.03250, Pages 0-10, arXiv, 2019.

  10. Alejandro Molina; Antonio Vergari; Karl Stelzner; Robert Peharz; Pranav Subramani; Nicola Di Mauro; Pascal Poupart; Kristian Kersting

    SPFlow: An Easy and Extensible Library for Deep Probabilistic Learning using Sum-Product Networks

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/1901.03704, Pages 0-10, arXiv, 2019.