Projekt

STREAMLINE

Streamlined Analysis of Data at Rest and Data in Motion

Streamlined Analysis of Data at Rest and Data in Motion

  • Laufzeit:

Gemeinsam mit vier führenden Europäischen Data-Economy-Unternehmen sowie weltbekannten Wissenschaftlern und Erfindern wird das DFKI im Projekt STREAMLINE den modernen Anforderungen des Europäischen Online-Mediengeschäfts begegnen. Die Projektpartner SICS, SZTAKI, PT, NMusic, IMR und Rovio werden ein bereichsübergreifendes Analyseframework entwickeln, welches sich aus Daten mehrerer Quellen (Online-Medien, Online-Spiele, Telekommunikation, mehrsprachige Webinhalte) bedient.

Aktuelle Technologien sind für Anwendungsfälle in diesem Bereich, z.B. gezielte Echtzeit-Dienstleistungen, Kundenbindung oder das Erstellen von Kundenprofilen, nur bedingt geeignet. Das Fehlen geeigneter Analysewerkzeuge für Datenströme, die sowohl im Daten Ruhezustand als auch Daten in Bewegung unterstützen, führt zu großen Verzögerungszeiten im System, während gleichzeitig die Verwendung und Verknüpfung verschiedenster Werkzeuge auch den Menschen an seine Grenzen stoßen lässt. Die sich daraus bisher ergebenden Lösungen gehen mit verringerter Effizient und Effektivität einher, während sie gleichzeitig Komplexität, Kosten und Lasten erhöhen.

STREAMLINE wird Barrieren abbauen und den Zugang zu Datenanalysewerkzeugen im Bereich Big Data für KMU in Märkten wie Gesundheit, Handwerk und Transport erweitern. Durch die Bereitstellung von Open-Source-Technologien, mit denen innovative, kontextualisierte und mehrsprachige Produkte und Services entwickelt werden können, werden Europäische Unternehmen eine führende Rolle im Bereich Big-Data-Technologien und der Transformation der Datenökonomie einnehmen können.

In Verlauf des Projekts wird das DFKI die wissenschaftlichen und technischen Aktivitäten der Partner koordinieren und technische Forschung und Entwicklung betreiben. Dabei wird das Projekt von der Verwendung von Apache Flink als eine etablierte Basis für die Entwicklung einer hochskalierbaren Echtzeit-Plattform für die Verarbeitung von Datenströmen mit hohen Durchlaufzeiten profitieren.

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 688191.

Partner

SICS Swedish ICT, MTA SZTAKI, PT Portugal, NMusic, IMR, Rovio

Projekt teilen auf:

Ansprechpartner
Prof. Dr. Volker Markl
Prof. Dr. Volker Markl

Publikationen zum Projekt

Adrian Bartnik, Bonaventura Del Monte, Tilmann Rabl, Volker Markl

In: Datenbanksysteme für Business, Technologie und Web (BTW 2019) Datenbanksysteme für Business, Technologie und Web (BTW 2019). GI-Fachtagungen Fachtagung für Datenbanksysteme für Business, Technologie und Web (BTW) March 4-8 Rostock Germany Gesellschaft für Informatik Bonn 2019.

Zur Publikation
Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Tilmann Rabl, Volker Markl

In: International Conference on Extending Database Technology. International Conference on Extending Database Technology (EDBT-2019) March 25-29 Lisbon Portugal ISBN 978-3-89318-081-3 OpenProceedings 2019.

Zur Publikation
Tilmann Rabl Jeyhun Karimov (Hrsg.)

IEEE International Conference on Data Engineering (ICDE-2018) befindet sich The annual IEEE International Conference on Data Engineering (ICDE) addresses research issues in designing, building, managing, and evaluating advanced data-intensive systems and applications. It is a leading forum for researchers, practitioners, develope April 16-19 Paris France IEEExplore 10/2018.

Zur Publikation

Deutsches Forschungszentrum für Künstliche Intelligenz
German Research Center for Artificial Intelligence