Skip to main content Skip to main navigation


Incremental Learning of an Open-Ended Collaborative Skill Library

Dorothea Koert; Susanne Trick; Marco Ewerton; Michael Lutter; Jan Peters
In: International Journal of Humanoid Robotics (IJHR), Vol. 17, No. 1, Pages 2050001:1-2050001:23, World Scientific Publishing Co. 2020.


Intelligent assistive robots can potentially contribute to maintaining an elderly person⤙s independence by supporting everyday life activities. However, the number of different and personalized activities to be supported renders pre-programming of all respective robot behaviors prohibitively difficult. Instead, to cope with a continuous and potentially open-ended stream of cooperative tasks, new collaborative robot behaviors need to be continuously learned and updated from demonstrations. To this end, we introduce an online learning method to incrementally build a cooperative skill library of probabilistic interaction primitives. The resulting model chooses a corresponding robot response to a human movement where the human intention is extracted from previously demonstrated movements. While existing batch learning methods for movement primitives usually learn such skill libraries only once for a pre-defined number of different skills, our approach enables extending the skill library in an open-ended and online fashion from new incoming demonstrations. The proposed approach is evaluated on a low-dimensional benchmark task and in a collaborative scenario with a 7DoF robot, where we also investigate the generalization of learned skills between different subjects.

Weitere Links