Skip to main content Skip to main navigation


Know your Enemy: Investigating Monte-Carlo Tree Search with Opponent Models in Pommerman

Jannis Weil; Johannes Czech; Tobias Meuser; Kristian Kersting
In: Computing Research Repository eprint Journal (CoRR), Vol. abs/2305.13206, Pages 0-10, arXiv, 2023.


In combination with Reinforcement Learning, Monte-Carlo Tree Search has shown to outperform human grandmasters in games such as Chess, Shogi and Go with little to no prior domain knowledge. However, most classical use cases only feature up to two players. Scaling the search to an arbitrary number of players presents a computational challenge, especially if decisions have to be planned over a longer time horizon. In this work, we investigate techniques that transform general-sum multiplayer games into single-player and two-player games that consider other agents to act according to given opponent models. For our evaluation, we focus on the challenging Pommerman environment which involves partial observability, a long time horizon and sparse rewards. In combination with our search methods, we investigate the phenomena of opponent modeling using heuristics and self-play. Overall, we demonstrate the effectiveness of our multiplayer search variants both in a supervised learning and reinforcement learning setting.

Weitere Links