Skip to main content Skip to main navigation


A Calculus for Higher-Order Concurrent Constraint Programming with Deep Guards

Gert Smolka
DFKI, DFKI Research Reports (RR), Vol. 94-03, 1994.


We present a calculus providing an abstract operational semantics forhigher-order concurrent constraint programming. The calculus isparameterized with a first-order constraint system and provides first-class abstraction, guarded disjunction, committed-choice, deepguards, dynamic creation of unique names, and constraint communication.The calculus comes with a declarative sublanguage for which computation amounts to equivalence transformation of formulas. The declarative sublanguage can express negation. Abstractions are referred to by names, which are first-class values. This way we obtain a smooth and straight forward combination of first-order constraints with higher-order programming. Constraint communication is asynchronous and exploits the presence of logic variables. It provides a notion of state that is fully compatible with constraints and concurrency. The calculus serves as the semantic basis of Oz, a programming language and system under development at DFKI.