Skip to main content Skip to main navigation

Publikationen

Zeige Ergebnisse 31 bis 40 von 540
  1. Christian Daniel; Herke van Hoof; Jan Peters; Gerhard Neumann

    Probabilistic inference for determining options in reinforcement learning

    In: Machine Learning, Vol. 104, No. 2-3, Pages 337-357, Springer, 2016.

  2. Abbas Abdolmaleki; Nuno Lau; Luís Paulo Reis; Jan Peters; Gerhard Neumann

    Contextual Policy Search for Linear and Nonlinear Generalization of a Humanoid Walking Controller

    In: Journal of Intelligent & Robotic Systems (JIRS), Vol. 83, No. 3-4, Pages 393-408, Springer, 2016.

  3. Roberto Calandra; André Seyfarth; Jan Peters; Marc Peter Deisenroth

    Bayesian optimization for learning gaits under uncertainty - An experimental comparison on a dynamic bipedal walker

    In: Annals of Mathematics and Artificial Intelligence (AMAI), Vol. 76, No. 1-2, Pages 5-23, Springer, 2016.

  4. Elena Erdmann; Karin Boczek; Lars Koppers; Gerret von Nordheim; Christian Pölitz; Alejandro Molina; Katharina Morik; Henrik Müller; Jörg Rahnenführer; Kristian Kersting

    Machine Learning meets Data-Driven Journalism: Boosting International Understanding and Transparency in News Coverage

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/1606.05110, Pages 0-10, arXiv, 2016.

  5. Martin Mladenov; Leonard Kleinhans; Kristian Kersting

    Lifted Convex Quadratic Programming

    In: Computing Research Repository eprint Journal (CoRR), Vol. abs/1606.04486, Pages 0-10, arXiv, 2016.

  6. Kristian Kersting; Christian Bauckhage; Mirwaes Wahabzada; Anne-Katrin Mahlein; Ulrike Steiner; Erich-Christian Oerke; Christoph Römer; Lutz Plümer

    Feeding the World with Big Data: Uncovering Spectral Characteristics and Dynamics of Stressed Plants

    In: Jörg Lässig; Kristian Kersting; Katharina Morik (Hrsg.). Computational Sustainability. Pages 99-120, Studies in Computational Intelligence, Vol. …

  7. Mayukh Das; Yuqing Wu; Tushar Khot; Kristian Kersting; Sriraam Natarajan

    Scaling Lifted Probabilistic Inference and Learning Via Graph Databases

    In: Sanjay Chawla Venkatasubramanian; Wagner Meira Jr. (Hrsg.). Proceedings of the 2016 SIAM International Conference on Data Mining. SIAM …

  8. Joseph G. Taylor; Viktoriia Sharmanska; Kristian Kersting; David Weir; Novi Quadrianto

    Learning Using Unselected Features (LUFe)

    In: Subbarao Kambhampati (Hrsg.). Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. International Joint …

  9. Christopher Morris; Nils M. Kriege; Kristian Kersting; Petra Mutzel

    Faster Kernels for Graphs with Continuous Attributes via Hashing

    In: Francesco Bonchi; Josep Domingo-Ferrer; Ricardo Baeza-Yates; Zhi-Hua Zhou; Xindong Wu (Hrsg.). IEEE 16th International Conference on Data Mining. …

  10. Shuo Yang; Tushar Khot; Kristian Kersting; Sriraam Natarajan

    Learning Continuous-Time Bayesian Networks in Relational Domains: A Non-Parametric Approach

    In: Dale Schuurmans; Michael P. Wellman (Hrsg.). Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI Conference on …