Projekt

Daystream

Data Analytics and AI for Secure, Trusted, and Reliable Mobility  (Datenanalytik und KI für sichere und zuverlässige Mobilität)

Data Analytics and AI for Secure, Trusted, and Reliable Mobility (Datenanalytik und KI für sichere und zuverlässige Mobilität)

  • Laufzeit:

Das Kernziel des Projekts DAYSTREAM ist die Entwicklung datengetriebener Anwendungen zur Früherkennung, zeitnahen Verfolgung und bestmöglichen Vorhersage von sicherheits- und ablaufkritischen Mobilitäts-Ereignissen. Hierzu sollen neue Datenressourcen durch die automatische Interpretation, Erweiterung und semantische Vernetzung bestehender Daten geschaffen werden. Ziel ist es, diese neuen Datenbestände so in die mCloud einzuspeisen, dass sie den Wert bestehender Daten erhöhen und zusammen mit diesen die Grundlage für eine Vielfalt künftiger Anwendungen bilden. Für die echtzeitnahe Ereigniserkennung werden verschiedenste strukturierte und unstrukturierte Datenquellen fortlaufend analysiert, ausgewertet und ggf. verknüpft. Die Analyse der Datenströme erfolgt aufgrund der zu erwartenden, massiven Datenmengen unter Einsatz modernster Big Data Technologie. Für die Real-Time-Datenverarbeitung soll insbesondere Apache Flink zum Einsatz kommen, eine skalierbare und hoch-performante Plattform zur Verarbeitung von “Big Data” Datenströmen. Ein wichtiger Aufgabenschwerpunkt des Vorhabens wird die Erforschung und Implementierung von massiv parallelen Verfahren des Maschinellen Lernens, der Zeitreihenanalyse, des Clusterings und der Anomalieerkennung sein. Das DFKI ist Koordinator des Verbundprojekts, zu dessen Partnern die DB Sicherheit GmbH, die idalab GmbH, die Universität Kassel und die Rhein-Main-Verkehrsverbund Servicegesellschaft mbH gehören.

Das Projekt DAYSTREAM ist Teil der Forschungsinitiative „mFund“, die vom Bundesministerium für Verkehr und digitale Infrastruktur (BMVI) unter Förderkennzeichen 19F2031A gefördert wird.

Partner

DB Sicherheit GmbH, idalab GmbH, Universität Kassel und die Rhein-Main-Verkehrsverbund Servicegesellschaft mbH.

Fördergeber

Bundesministerium für Verkehr und digitale Infrastruktur (BMVI)

19F2031A

Teil der Forschungsinitiative „mFund“

Bundesministerium für Verkehr und digitale Infrastruktur (BMVI)

Projekt teilen auf:

Ansprechpartner
Holmer Hemsen, Ph.D.

Publikationen zum Projekt

Linglong Meng, Stefan Schaffer

In: Proceedings of the 2nd Conference on Conversational User Interfaces. International Conference on Conversational User Interfaces (CUI-2020) New York, NY, USA CUI ’20 ISBN 9781450375443 Association for Computing Machinery 2020.

Zur Publikation
Mohammad Mahdavi, Felix Neutatz, Larysa Visengeriyeva, Ziawasch Abedjan

In: Robert Jäschke, Matthias Weidlich (Hrsg.). Proceedings of the Conference on "Lernen, Wissen, Daten, Analysen". GI-Workshop-Tage "Lernen, Wissen, Daten, Analysen" (LWDA-2019) September 30-October 2 Berlin Germany Seiten 10-19 CEUR 9/2019.

Zur Publikation
Mahdi Esmailoghli, Sergey Redyuk, Ricardo Martinez, Ziawasch Abedjan, Ariane Ziehn, Tilmann Rabl, Volker Markl

In: Holger J. Meyer, Hannes Grunert, Tim Waizenegger, Lucas Woltmann, Claudio Hartmann, Wolfgang Lehner, Christian Schmitz, Dhiren Devinder Serai, Tatiane Escobar Gava (Hrsg.). Datenbank-Spektrum (Spektrum) 19 Seiten 1-18 Gesellschaft für Informatik Bonn 8/2019.

Zur Publikation

Deutsches Forschungszentrum für Künstliche Intelligenz
German Research Center for Artificial Intelligence