The Always Best Positioned Paradigm for Mobile Indoor Applications

Tim Schwartz

PhD-Thesis Saarland University 3/2012.


In this dissertation, methods for personal positioning in outdoor and indoor environments are investigated. The Always Best Positioned paradigm, which has the goal of providing a preferably consistent self-positioning, will be defined. Furthermore, the localization toolkit LOCATO will be presented, which allows to easily realize positioning systems that follow the paradigm. New algorithms were developed, which particularly address the robustness of positioning systems with respect to the Always Best Positioned paradigm. With the help of this toolkit, three example positioning-systems were implemented, each designed for different applications and requirements: a low-cost system, which can be used in conjunction with user-adaptive public displays, a so-called opportunistic system, which enables positioning with room-level accuracy in any building that provides a WiFi infrastructure, and a high-accuracy system for instrumented environments, which works with active RFID tags and infrared beacons. Furthermore, a new and unique evaluation-method for positioning systems is presented, which uses step-accurate natural walking-traces as ground truth. Finally, six location based services will be presented, which were realized either with the tools provided by LOCATO or with one of the example positioning-systems.

Weitere Links

SchwartzDissertation.pdf (pdf, 7 MB )

Deutsches Forschungszentrum für Künstliche Intelligenz
German Research Center for Artificial Intelligence