Skip to main content Skip to main navigation

Publikationen

Zeige Ergebnisse 51 bis 60 von 777.
  1. Gregor Duwe; Dominique Mercier; Verena Kauth; Kerstin Moench; Markus Junker; Juan Pablo Vesga; Werner Seiz; Juergen Scheele; Andreas Dengel; Axel Haferkamp; Thomas Höfner

    First preliminary results of artificial intelligence generated treatment recommendations for urothelial cancer based on multidisciplinary cancer conferences from the KITTU project

    In: Annals of Oncology, Vol. 35, No. S2, Pages 1161-1161, ESMO, 9/2024.

  2. Gregor Duwe; Verena Kauth; Kerstin Moench; Dominique Mercier; Markus Junker; Juergen Scheele; Werner Seiz; Oliver Pfante; Juan Pablo Vesga Simmins; Natasja De Bruin; Axel Haferkamp; Andreas Dengel; Thomas Höfner

    KITTU: Artificial intelligence supports multidisciplinary cancer conferences – first steps towards revolutionizing clinical decision making in oncology

    In: Reinhard Büttner (Hrsg.). Oncology Research and Treatment, Vol. 47, No. Supl. 1 - 36. Deutscher Krebskongress - Fortschritt gemeinsam gestalten, Pages 20-20, Karger Publishers, 2/2024.

  3. Ho Minh Duy Nguyen; An T. Le; Trung Q. Nguyen; Nghiem T. Diep; Tai Nguyen; Duy Duong-Tran; Jan Peters; Li Shen; Mathias Niepert; Daniel Sonntag

    Dude: Dual Distribution-Aware Context Prompt Learning For Large Vision-Language Model

    In: The 16th Asian Conference on Machine Learning. Asian Conference on Machine Learning (ACML-2024), December 5-8, Proceedings of Machine Learning Research, 2024.

  4. Hoai-Chau Tran; Ho Minh Duy Nguyen; Duy M. Nguyen; TrungTin Nguyen; Ngan Le; Pengtao Xie; Daniel Sonntag; James Zou; Binh T. Nguyen; Mathias Niepert

    Accelerating Transformers with Spectrum-Preserving Token Merging

    In: The Thirty-Eighth Annual Conference on Neural Information Processing Systems. Neural Information Processing Systems (NeurIPS-2024), December 10-15, Canada, JMLR.org, 2024.

  5. Hoai-Chau Tran; Ho Minh Duy Nguyen; Manh-Duy Nguyen; Ngan Hoang Le; Binh T. Nguyen

    Energy Minimizing-based Token Merging for Accelerating Transformers

    In: International Conference on Learning Representations (ICLR), Practical ML for Low Resource Settings Workshop. International Conference on Learning Representations (ICLR), May 11-12, JMLR.org, 2024.

  6. Ho Minh Duy Nguyen; Nina Lukashina; Tai Nguyen; An T. Le; TrungTin Nguyen; Nhat Ho; Jan Peters; Daniel Sonntag; Viktor Zaverkin; Mathias Niepert

    Structure-Aware E(3)-Invariant Molecular Conformer Aggregation Networks

    In: Proceedings of the 41st International Conference on Machine Learning. International Conference on Machine Learning (ICML), July 21-27, Austria, JMLR.org, 2024.

  7. Mohammad Hossein Rimaz; Christiane Plociennik; Martin Ruskowski

    Semantic Asset Administration Shell for Circular Economy

    Mastersthesis, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI), 2024.

  8. Enhancing Object Detection Performance for Small Objects Through Synthetic Data Generation and Proportional Class-Balancing Technique: A Comparative Study in Industrial Scenarios

    In: Achim Wagner; Kosmas Alexopoulos; Sotiris Makris (Hrsg.). Advances in Artificial Intelligence in Manufacturing. European Symposium on Artificial Intelligence in Manufacturing (ESAIM-2023), Cham, Pages 90-105, ISBN 978-3-031-57496-2, Springer Nature Switzerland, 2024.

  9. LNQ Challenge 2023: Learning Mediastinal Lymph Node Segmentation with a Probabilistic Lymph Node Atlas

    In: Steve Pieper; Erik Ziegler; Tawa Idris; Bhanusupriya Somarouthu; Reuben Dorent; Gordon Harris; Ron Kikinis (Hrsg.). Machine Learning for Biomedical Imaging (MELBA), Vol. 2, No. MICCAI 2023 LNQ challenge special issue, Pages 817-833, MELBA Journal, 5/2024.

  10. Jana-Rebecca Rehse; Sander J. J. Leemans; Peter Fettke; Jan Martijn E. M. van der Werf

    On Process Discovery Experimentation: Addressing the Need for Research Methodology in Process Discovery

    In: ACM Transactions on Software Engineering and Methodology (TOSEM), Vol. 34, No. 1, Article No.: 3, Pages 1-29, Association for Computing Machinery, New York, 2024.